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Abstract

In this paper, we are concerned with the per packet transmission delays
; induced by the Capetanakis collision resolution protocol for infinitely large
number of identical bursty users.

We first correct the existing lower and upper bounds on the expected per

packet transmission delay E{D}.
Then, we proceed by developing a new upper bound on E{D}. This new bound

is much tighter, approaching the lower bound for large arrival rates.
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1. Introduction

In this paper, we are concerned with the “"multiple-access" problem,where a

large number of independent, packet transmitting, bursty users request access to

a common channel. We consider "random-access" transmission protocols, as more

efficient for the present problem [4].

In more specific terms, the user and channel models considered, are as

follows:

(1)

(ii)

(1i1)

(iv)

The users are independent from each other, and they can communicate
with each other only through the channel. Furthermore, the users

are large in number, they are identical and bursty, and each generates
packets of fixed common length. The cumulative input to the channel
traffic is a Poisson process.

The common channel is perfect, i.e. there are no channel errors. ’In
addition, the channel time is divided in slots of identical length,
where this length is equal to the length of one packet.

The feedback channel is perfect, i.e. it does not induce propagation

delays. Furthermore, the feedback channel broadcasts with no errors
the outcome from each channel slot. In particular, it broadcasts a
trenary sequence, where the value of each digit from this sequence
indicates if the corresponding slot was empty, busy with exactly one
packet, or busy with at least two packets.

The transmission characteristics imply low-level synchronization among

the users. In particular, each user is allowed to transmit at most
one packet at the time, and he can start transmission only at the

beginning of some channel slot. Thus, some channel slot is empty if
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no user transmitted a packet within it. Some channel slot is busy

with exactly one packet if exactly one user transmitted within {it.

It is assumed that «n this last case the transmitted packet is received
correctly. 1Incorrect transmission occurs only if at least two packets
are transmitted within the same slot. Then, collision occurs, and the
involved packets are lost completely. If so, those packets are restored
in the queues of the corresponding users, and are retransmitted within
some future slots.

Any "random-access'" transmission protocols, which are appropriate for the above
model, are characterized by a number of performance parameters. The number one such
performance parameter, which in fact determines the eligibility of a given random-
access transmission protocol, is stability. A stable random-access transmission
protocol maintains the rate of the cumulative input Poisson traffic, while an
unstable such protocol does not. Given a stable random-access transmission protocol,
two other performance characterisitcs for comparison with other stable such protocols,

are the throughput and the per packet transmission delay. The throughput is defined

fsuccessful transmissions
fitransmission attempts

as the ratio p = induced by the random-access transmission
protocol, and it is related to the channel capacity. 1In fact, the channel capacity
is the maximum of all throughputs induced by stable random-access transmission
protocols. The per packet transmission delay is defined as the time between the
arrival of some packet and its successful transmission, where time is measured in
number of channel slots.

The oldest existing random-access transmission protocol for the user and channel

models stated in this paper, is the slotted-Aloha. The problems regarding the opera-

tion of the slotted-~Aloha, are by now well known [1-4], and we will not discuss them

here. Instead, we will focus on the protocol by Capetanakis [1-4]. Capetanakis'
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protocol has been called collision-resolution protocol, it is stable for input

Poisson rates below .3465, and it induces a throughput of .43. Refinements of
Capetanakis' algoritnm by Gallager, Massey, and Mosely, have increased the input
Poisson rate for stability to .375, and the induced throughput to .488 (4].

In this paper, we concentrate on the per packet transmission delay induced by
Capetanakis' collision resolution protocol. Afterall, the very reason for considera-
tion of random-access protocols is the improvement of delays. ;

Capetanakis studied the per packet transmission delay (or waiting time) induced o
by his otocd.. 7The resulting expression being complex, a lower and an upper bound
on this delay were developed. The procedure for the derivation of these bounds can ;;
be found in [1,4].

Here, we develop tighter lower and upper bounds on the per packet transmission

delays induced by Capetanakis' protocol, through the correction of some step in the

used procedure {1,4] first, and then through a fresh approach. ?

2. The Capetanakis Protocol - Notation q

We will use reference [4], since we feel that Capetanakis' protocol and its
analysis are best explained there. We will use basically the same notation as in
[4), and we will describe the Capetanakis Collision Resolution Protocol (CCRA) only
briefly and quantitavely.

The CCRA is activated just after a collision slot. Then, through the feedback
channel, all users are instructed to withhold newly generated packets until the
collision is resolved. The collision resolution interval (CRI) is the number of ﬂ

slots required for the resolution of the collision, that is the successful trans-

mission of all packets involved in the collision. The collision resolution is

obtained through the application of the CCRA, during the CRI. The CCRA is based on

the following general principle:




After each collision slot within the CRI, each user involved
in this collision flips independently a binary fair coin with
outcomes 0 and 1. Among those users, only the ones with out-
come O transmit within the next slot. Until the initial
collision is completely resolved, the resolution of no other
collision within the CRI is attempted.

The CCRA has the structure of a binary tree, where each node within the tree
is taken to the leaves-depth, before other nodes on the same depth with the original
node are resolved.

Using the reasonable for infinite number of identical bursty users assumption,
that during any CRI there may be at most one new packet arrival per user, we define
as in [4] the following parameters:

LN : The expected length of a CRI, given that the number of packets involved

in the collision within the slot with which the CRI starts, is equal to N.

X, : The number of packets involved in the collision of the first slot of the

ith CRI, from the beginning in time that the system starts operating.

Y, : The length of the ith CRI.

i

X, : The Xi for i+~, that is in steady-state.

Yoo : The Yi for i+,

Ya : In steady-state, the length of the CRI in progress, when some new packet
arrival occurs.

Yd : In steady-state, the length of the CRI in progress, when some packet
departs from the system (that is, when the packet is successfully
transmitted).

Xd : In steady-state, the number of packets involved in the collision of the

first slot of the CRI, during which a packet departs from the system.
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D : In steady-state, the time interval measured in number of slots, from the

arrival of some packet to its departure from the system.
A : The rate of the cumulative input Poisson process.
l; if i=N
0 ; otherwise
We will point out here that the existence of steady-state for the CCRA has been
proven rigorously by Capetanakis.
Using the notation presented in the present section, in the next section we
will outline the approach taken and the results obtained in [4], regarding the per :

packet transmission delays induced by the CCRA.

3. The CCRA Transmission Delays

In [4], lowver and upper bounds on the expected per packet transmission delays
(waiting times) E{D} induced by the CCRA, have been obtained. The bounds are valid

for rates A in the region [0, .3465]. Within this X region, the expected length

of each CRI is finite, and the system reaches steady-state.
The following approach was taken in the development of the bounds (in [4]).

First a recursive expression for the evaluation of LN was obtained. Based on

this expression, the following lower and upper bounds on LN were obtained:

j
v

> 2.8810 N - 1+ 2§, - 0.8810 &, @)

Ly

| A

2,8867 N + GON ~ 1.8867 GlN (2)

In parallel, it was also found that the following equality holds:

E{Yi}
E{Ya} ='EF5*T (3)

[s e}
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From this point on, the key expression used for the eventual evaluation of

the bounds for E{D}, was the following:

X
a
E% /< =L}=XL 4)
a

Expression (4) is true due to the fact that the arrival process is Poisson,

and it results in the following expression:
E{xd} = A E{Ya} (5)

The bounds in (1) and (2), in conjuction with expression (5) and the obvious

Y
relation E i// = LN’ result then in the following lower and upper bounds for
X, =N
d

the expected value E{Yd}:

Y E{Ya}
E{Yd} > 2.8810 X E{Ya} -~ 1.8810 + 2.8810 e (6)

E{v,} < 2.8867 X E{Y_} + (1 ~ 1.8867)) e ¢))

The bounds in (6) and (7) are expressed as functions of the rate A and the
expected value E{Ya}.
Subsequently the following lower and upper bounds on the expected delay E{D}

were found, in terms of E{Ya} and E{Yd}:

1 1 1
5 B{Y } + 5 Elyy - 1} < E{d} < 5 E{v } + Ely, - 1} (8

The bounds in (8), in conjuction with the bounds in (6) and (7), result clearly

*
in the following bounds for E{D} :

- E{Ya})

E{p} > (»;— +1.4405 2) E{Y_ } - 1.4405 (1 - e (9)

E{D} < (3 + 2.8867 1) E{Y_} + (1 - 1.8867)) e _ 1 (10)

*
In expressions (4.42) and (4.43) in [4], a parenthesis is missing.




The bounds in (9) and (10) are functions of A and E{Ya} only.

Finally, tight bounds on E{Y_} and E{Yi}, result in tight lower and upper
bounds for E{Ya} in (3). These bounds clearly provide lower and upper bounds for

E{D} through (9) and (10), and they are given by the following expressions:

5.964A + 1 - 5.964A(1-A)(1 ~ 2.8867A) /{1 - 2.8867A(1-2)] . A

1 - 8.333)2
E{Ya} < (11)

i 5.964) + 1 .
1 - 8.33302

< .22

.22 < X < .3464

5.897A + (L - 5.897A) (L - 2.8867\)/[1 - 2.8867A(1-\)]

1 - 8.3003°
3 E{Ya} > (12)

————~l~———§— s .1696 < A < .3464
1 - 8.300)

s A< .1696

The bounds in (11) and (12), in conjuction with the bounds in (9) and (10),
provide lower and upper bounds for E{D}, which are functions of the rate A only,
as desired.

These bounds have been computed for different A values [4]. We will discuss
the results from the computations in [4] as they compare to our results, in the

following section.

4, Modified E{D} Bounds

In section 3, we outlined the approach taken in [4] for the computation of
lower and upper bounds on the expected per packet transmission delay E{D}.

The key expression for the computation of the E{D} bounds in [4], was expression

(4) in scction 3 of the present paper. But the assumption throughout the whole

related analysis, is that there exists at least one packet arrival within the Ya




slot period. Thus, the relevant key expression in the computation of the E{D}

bounds should be an expression for the expectation E{X,d|Ya = L, Xd Z_l}, rather

X
than the expression for the expectation E{ d/4 - L} in (4).
a

In this section, we will substitute expression (4) by an expression for the

X
expectation E d - ,» and we will subsequently compute modified lower
Y =L, X;>1

and upper bounds for the expected value E{D}.

Due to the fact that the packet arrival process is Poisson with rate A, we

clearly have:

0 ; k=20
X, =k
d (X =k )
P - , = d k (13)
Y =1, X >1 P /Y al e-AL (\L)
a - k! k>0
X, >1 -AL >
e ) ‘
Y =1L 3
a
1
From expression (13), we have in a straight-forward manner:
X
E d = ___AE:XE (14) |
Y, =L, X;>1 1-e i
. |
_ =AY (AYa)
Xd =k e a
P xdzl=E Y (15)
l-e a Xd >1

; where the expectation in (15) is with respect te Ya’

At this point, let us observe that the implicit assumption is that at least

one arrival occurred during the slot interval represented by Ya. This assumption

implies X, > 1. It is due to this observation that Massey [4] dropped the condi-

d




X
tioning X, > 1 from the expectation E d
d — Y =1,

xd > 1}. Unfortunately, however,

the above observation does not imply that the Xd process is Poisson. The distribu-
tion of Xd is rather reflected by expression (14).

Using the above observation, we will delete from now on the conditioning
Xd.3 1 from expressions involving expectations on Ya. Then, the Xd > 1 condi-
tioning in (15) is deleted, and we proceed as follows.

From expression (15) we obtain directly the following expressions:

AY

(Xa =1 ) AYa e a
P = E{—m——— (16)
Xg 21 XY
l~-e "a
Xd AYa
R an
l-~e a

In expressions (16) and (17) the expectations are with respect to Ya’

Now, we will use the upper bound for L., as given by expression (2), where the

N
term 50N is deleted due to the Xd_z 1 conditioning. We obtain then, the following

inequality
¥4
E X, =N, X, > 1 = Ly £ 2.8867 N - 1.8867 §, ' ; N>1 (18)

Directly from (18), we also obtain the following expression.

Y X X
d d d =1
E /xd >1( S 28867 E /Xd > 1( " 1-8867 p( Ad > 1) (19)

Substituting expressions (16) and (17) in expression (19), we obtain:

Y, AY, A eMa |
% < 2.8867 F{————— - 1.8867 E{—2&——

E (20)

> 1 ‘
palt =Y -
d 1-e M, 1 - e M,




~10-
Ay e-AYa }
a

In the right part of inequality (20), we add and subtract the term E ——————-—-——‘ .

We then obtain:

Yy : AYa
£ % > 1(52.8867 AElY} +Efmg— (21)
d - e 21

Observing now that Ya > 1, and that for x > 0 the function is monotoni-

exx—l

cally decreasing with increasing x, and it is convex for x > 1, we can obtain the

following bound:

Y }
a A
Y ‘ < 3 3 For Ya >1 (22)
- a e ~1
e -1

E

Substituting the bound in (22) in expression (21), we obtain:

Y

p | )

E% /(d § 1$ < 2.8867 A E{Y} + -3 (23)
— e -1

’Y
Expression (23) provides an upper bound on the expectation El i//x' > 1(°
d—

which is different than the upper bound in (7), if the conditioning Xd > 1lis
deleted as necessary and implicit.

Using the lower bound for

L
a lower bound fér E lYi//;d 2‘11 .

Indeed, deleting again the term 60N in (1), we obtain:

N’ as given by expression (1), we can derive similarly

Y
‘ d - -
E /Xd N x> 1’ = Ly > 2.8810 N - 1 - 0.8810 §,, (24)

l

Averaging out with respect to N, as in (19), and substituting expressions (16)

and (17), we obtain from (24):

‘ Yd AYa AY e-AYa l
E > 2.8810 E{————————'-1 - 0.8810 E{—& ——— (25)
| /*a21) = oy, | RV
l-e a l-e a

|

RN P P O




~-11-

-AY

AY e "a
Adding and subtracting the term ZE{-—E—-————-} in the right part of (25), we
1 -e-Ha
obtain:
E‘Yd/ >28810AE{Y}-1+2E’-T———”“ I (26)
I /"xd>1_. a l Yo ‘
e -1

Due to the convexity of the function for x > 1, and due to the fact that
Ax
e -1

Ya.l 1, applying the Jensen inequality we obtain the following bound:

‘ A, Ely, )
El‘xg'—‘ 2N R 27
e 221 e 22
A Substituting the bound in (27) to the inequality in (26), we finally obtain:
’Yd | } AE(Y, )
E > 2.8810 A E{Y_ } -1+ 2 (28)
‘ I /xd >1 a eXEh{ai—l ‘

Y
Expression (28) provides a lower bound on the expectation E{ ;i/;/ 5 1} . ‘
d — ‘

which is different than the lower bound in (6), if the conditioning X321 1is
deleted as necessary and implicit.
Using now the bounds in (23) and (28), in expression (8), after deleting the '

conditioning Xd > 1, we obtain the following modified bounds for the expectation !

E{D}: ‘
| 1 Aefy,} ;
- E{D} > (7 + 1.4405 ) E{Y_} -1 + EW.Y (29) !

e -1
1 A
E{D} < (5 + 2.8867 }) E{v,} -1+ (30)
e -1

The bounds in (29) and (30) are different than the corresponding bounds in

(9) and (10}, and they are functions of the rate A and the expected value E{Ya}'
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If the bounds on the expected value E{Ya}' as given by expressions (11) and (12),
are used in expressions (29) and (30), modified lower and upper bounds on E{D}
can be obtained. These last bounds are functions of the rate A only, as desired.

We performed parallel computations for the bounds in (9) and (10) and the bounds
in (29) and (30), for different values of A. Our results are exhibited in table 1.
As expected, due to the correction we obtained by the addition of the conditioning
xd > 1, our modified lower and upper bounds are higher than the corresponding bounds
in [4], for all X values. Also, as expected, the correction has stronger effects on
low A values. In fact, for A values below 0.15, our modified lower bound is higher
than the upper bound in [4]). 1In general, the curves indicating the modified lower

and upper bounds are shifted upward versions of the corresponding curves in figure

4.1 of [4].
Lower Bounds Upper Bounds
A 0 M 0 M
0.0500 0.521 0.569 0.531 0.645
0.1000 0.599 0.701 0.664 0.881
0.1500 0.780 0.961 1.009 1.319
0.1696 0.902 1.125 1.252 1.595
0.2000 1.200 1.505 1,842 2.236
0.2500 3.423 3.958 5.762 6.231
0.3000 9.009 9.521 14,560 15.096
0.3333 38.067 38.508 58.204 58.781
0.3400 80.203 80.643 121.458 122.043
0.3450 371.910 372.351 559.442 560.032

0 : Bounds in {4]

M : Modified Bounds in

Table 1

(29) and (30).
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5. Improved Bounds for E{D}

In section 4, we simply corrected the bounds in [4] for E{D}.

In this section, we will take a fresh approach, to develop tighter bounds on
E{p}.

We will first develop an exact expression for a per packet waiting time para-
meter. We will then present an intuitive analysis and subsequent bounds on this
parameter. Finally, using these bounds, we will compute bounds on e{pb}.

Given that N packets arve involved in the collision within the first sIQt of
some CRI, we will first seek expressions for the expected transmission delay for
each of the N packets, within the CRI. We will adopt Capetanakis' collision resolu-
tion protocol {1 -~ 4].

After the first collision slot within the CRI, which started with N collided
packets, let { out of the N users have outcome 0 from flipping their fair coin.
Then, the corresponding outcome for the remaining N-i users is l. Let us denote

this event (i1, N-i). Then, given the event (i, N-i), each of the N packets gives

outcome 0, with probability %. It gives outcome 1, with probability §§i.
Define:
d; : The expected delay in the transmission of some packet within the

3J = 0,1 CRI, given that the packet gave outcome j at the first trial, and
that the first trial event is (i, N-i).

T/ : The expected delay in transmission of some packet within the CRI,
given that N packets were involved in the collision within the first
slot of the CRI, and that the first trial event is (i, N~i).

my ¢+ The expected delay in transmission of some packet within the CRI,
given that N packets were involved in the collision within the first

slot of the CRI.




Then, we have:

i 4 i N-i
i -"% Nt Y N (31
Also, defining my = 0, observing that m = 0, and considering the operation

of the CCRA, we can easily see that the following expressions hold for N > 2:

i
d0 =1 + o,

(32)
i
dl =1+ Li + mN—i

3 where Li is defined in section 2 of this paper. Substituting expressions (32) in

(31) we obtain:

= 1 N-i .
my/y T 1+ LT + N (mN—i + Li) ; N>2 (33)

Clearly, the probability with which the event (i, N-i) occurs is (g) lﬁ‘
2

Therefore, we have:

N
m= 20 () 5 ms (3

N-1 N-1
A -m= 22y () m e ) () (3
i=1 i=0 -

Now, we use the following expressions from [4]):

: N
N N N
; AN 2+2§(1)L1,N_>_2
1=0
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Using expressions (36) and (35), we finally obtain the following exact recursive

expregsions for My which also involve the Li's:

N-1

N N-2 N-1 N-2

(2" - 2) my =2 LN_1+2§ (j1)m +3@ D 38>3
i=1

m.=m =0 (37)

In the appendix, we present an alternative procedure for the exact evaluation
of the my parameters.

Unfortunately, the expressions in (37) are complex, and the development of
bounds for the mN's from them, seems impossible. For that reason, we will use some
intuitive analysis for the evaluation of the mN's. Then, we will verify the results

from the intuitive analysis, by computationally comparing with the exact expressions

in (37).

a. Intuitive Analysis for oy

Consider some CRI, which starts with a slot with 2N collided packets. If

N+, then with probability close to one, the first trial will result in N outcomes

equal to 0, and N outcomes equal to 1. Thus,

1+ LI with probability ~ 1
2 (38)

N T

Noe 1+ LN + mN ; with probability ~'%

Therefore, we conclude from (38) that for N+ we have:

myy ® 1+ Ty + LN/Z (39
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Following the recursions induced by expression (39), we obtain:

k-1
mg = k + m, + %- E L ; for N power of 2, and N large (40)

i
2 41 2

Similarly, for N equal to a power of 2, and N large enough, we also obtain:
k-1
L,>k+L + E in (41)

2 =

Substituting (41) in (40), we then obtain:

Lk L
. Kk 2 21
L S R B (42)
Denoting N = 2k and k = ZogZN, we finally obtain from (42) the following
approximation:
m, = .5 ZogZN + ;E-+ C ; N> (43)
!
; where C is a variable equal to Ll whose influence on the expression (43)
is infinitesimal for large N's.
Let us now define:
L
o N
my = .3 zogzu + 5 (44)

Then, m; provides an approximation for the parameter M whose exact expression
is given by (37).
It is unknown, at this point, how good an approximation of mes m% is. We will

study the closeness between my and m; numerically. We present our results on that,

in the following subsection.
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b. Comparison between m, and mg

We denote by oy the exact expression in (37). We denote by m; the approxima-

tion in (44). We define:

o
°NT ™% T Ty (43)
We study the closeness between the expressions for m and mg numerically, by

computing the parameters e and N_leN for different N's. The results of our compu-

N
tations are exhibited in table 2.

From the results in table 2, we observe that for increasing N, the parameter
ey increases monotonically, while the rate of increase N—leN decreases monotonically.

In fact, we observe that for N > 2, the N-leN values remain within the interval
[0, .019]. Due to the monotonicity of the function f(N) = N-leN, the observed
upper bound .019 on £(N) is pessimistic for N values larger than 70. Using this
pessimistic bound for large N's, together with the lower bound 0 for f(N) and with
expressions (44) and (45), we obtain the following lower and upper bounds on the

exact My for N > 1:

L L

.5 LogN + 5 = .5 8, <m < .5 Log N + 5 + LOLON - .5 8, (46)

The bounds in (46) will be used for the computation of lower and upper bounds

for the expectation E{D}.

c. Lower and Upper Bounds on E{D}

We will first proceed with bounds for the expectation E{mN}. These bounds will
be found through the computation of the expected values of the bounds in (46), condi-
tioned on Xd > 1 (as in section 4 of this paper).

We will first compute the expected values of each term in the bounds appearing

in (46). We recall that the ramdon variable N corresponds to Xd = N, where xd is
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defined in section 2 of this paper.

X AY
N d a
E = E{ - E{-——————-———} (47)
{ /xdil} xdil} 1 - e Y,

; where in (47) expression (17) has been used, and as in section 4 the conditioning

We have:

X3 2 1 is deleted from expectations involving .- Y, is defined in section 2.
: XYa
A simple transformation on the expectation E-—————:X§— leads to the following
l1-e " a
equation:
i AYa XYa )
E —ov ( * A E{Ya} + E —;—Y——‘ (48)
l-e a e 2.1

Using, as in section 4, the convexity of the function i:
e -1
) recalling that Ya.Z 1, we obtain the following inequality from (48):

for x > 1, and

AYa A
_ Ef —F— <A E{Y } + — (49)
=AY - a e -1
l-e a
Substitution of (49) in (47) gives:
gl <AElY) + 2 (50)
X,>1l{ — a A
d — e -1

Similarly, using the concavity of the logarithmic function, and the inequality

(50), we obtain:

Log N
E{ : X >1}i£°ng{% >1}5£°32(>‘ E{Y,} + ; ) (51)
d — d — e -1 .

Now recalling that L

is the same with Yd in section 2 of this paper, and using

N
the bound (23) in section 4, we obtain:
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Ly Yy A
E //; > 1(=E //x > 1( < 2-8867 A E{Ya} + = (52)
d = d — e -1

Finally, using expressions (16) and (27) in section 4, we compute:

8 X, =1 ; AY E{y }
1N d a a
E { // } =P ( // ) = E -——————} > A (53)
X, >1 X, >1 AY —_ XE{Y F
d — d — le a_1 e a -1

Through expressions (46), (50), (51), (52), and (53), we obtain the following

upper bound cn the expectation E:mN}, where the conditioning X; > 1 is now deleted

as implicitly necessary:

Elm,} < .5 Log, (X E{Y,} + eﬁ_l) + .5 (2.8867 A E{Y,} + ;%:I)
(54)
A E{Ya}
+ .019 (A E{Ya} + e)\_l) - .519 A TE_‘[Y;T—
e -1

Due to difficulties in obtaining lower bounds for the expected value of the
lower bound in (46), we will not search for a lower bound on the expectation E{mN}.
Instead, we will use the lower bound in (29) for the expected value E{D}. As we
will see, our numerical results justify this approach.

The E{D} and E{mN} expected values, are clearly related through the following

equation:
E{p} = .5 E{y_} + Elmy} (55)

Substitution of the bound in (54), in equation (55), provides the following

upper bound on the expectation E{D}:
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E{p} < .5 Log, (A E{y } + i ) + (.5 + 1.4434 }) E{y} +

e -1

(56)
E{y_}
A A a
+ —— + .019 (A E{Y } + - .519 X SEN T
2(eA-1) ( a eA—l) eAE Ya -1

Finally, using the bounds on E{Ya}, as given by expressions (11) and (12) in
section 3 of this paper, we obtain from (56) an upper bound on the expectation E{D},
which is a function of the rate A only.

In table 3, we exhibit our computational results, where the upper bound is
computed through expression (56), while the lower bound is computed through expression
(29) and is the same as in table 1, section 4. Comparing the upper bounds in tables
1 and 3, we see that the bounds in table 3 are much tighter. In addition, we observe
that for high A values, close to the limit .3465 for stability of the CCRA, the
lower and upper bounds in table 3 are very close to each other. This result justifies

the fact that we maintained the same lower bound, as in section 4.

Upper Bound

A Lower Bound Upper Bound From Table 1
0.0500 0.569 0.615 0.645
0.100 0.701 0.814 0.881
0.1500 0.961 1.193 1.319
0.1696 1.125 1.431 1.595
0.2000 1.505 1.979 2.236
0.2500 3.958 5.266 6.231
0.3000 9.521 11.889 15.096
0.3333 38.508 42,157 58.781
0.3400 80.643 85.119 122.043
0.3450 372.351 380.126 560.032

Table 3

Ny b . -
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7. Appendix

Alternative approach to the computation of m
N

Define:

ajN : The expected delay in the transmission of the jth successfully trans-
mitted packet within some CRI, where N packets are involved in the
collision within the first slot of the CRI.

Clearly, a;, = 0.

Now, let N > 2, and let the first trial event be (i, N-i). Then,

l+a,. ;3 for j<i<N

ji
aN " (A.1)
: <i<jyc<
1+ Li + aj—i,N-i 3 0<i<j<N
. 1 X : . Ny 1
Since the probability with which the event (i, N-i) occurs is (i) N 0 ve
2
obtain from (A.1): ‘
j-1
N N)
2ay = (fla+i +a )+E( (1 +a) =
i=0 i=j
Jl j-1 N N
= 2N 4 L+E . .+§:(i)aji (a.2)
-1,N—1 i=3
1=0 i=0 J

Applying some transformations on (A.2), we finally obtain the following recursive

expressions for the ajk parameters:
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a;, = 0, 2y, = 2.5, a,, = 3.5
N
N N N
(2-2)a, 2*“2;(1)&11 ; N> 2
=1
j-1 j-1 N-1 (A.3)
N N N N N .
@-dage =2+ ) (T + ) (1) 2y ne Z(i) 8343 223281
i=0 i=1 i= N> 2
N-1 N-1
N _ N N N .
(2-2)ay, =2 +E (1) o, + (§)a; 5 n22
i=0 i=1

Each of the N packets is the ith successfully transmitted packet within the

CRI, with equal probabilities for all i : 1 < i < N. Therefore,

N
m, = N1 Z ay (A.4)

i=1

By substituting expressions (A.3) in (A.4) and applying some transformations,

we obtain the expressions in (37).
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